/.

fuﬂ”ﬂ, = =, \“\\‘“ﬂ
- 2
: :

:

K- DISCOVERING THE BEST
F DEVELOPER FRAMEWORK

ﬂ THROUGH BENCHMARKING

L\k DeLpPHI, WPF wiTH .NET FRAMEWORK, &
ELECTRON ON MicrosorT WINDOWS 10

16 DECEMBER 2020 | VERSION 1.0

AUTHORS
JiIM McKEeeTH | ADAM LEONE | ELI M.

EMBARCADERO TECHNOLOGIES
10801 NoRTH MOPAC EXPRESSWAY
BuiLbing 1, Suite 100
AusTIN, TX, 78759
WWW.EMBARCADERO.COM

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

~
Ny

Executive Summary

When businesses choose a software framework, they commit to a long-term relationship for the
duration of their application’s lifecycle. Given the strategic consequences of this decision,
businesses must carefully consider a framework’s developer productivity, business
functionality, application flexibility, and product performance. The best framework
demonstrates strength in each category and will minimize product time-to-market, lower
maintenance costs, maximize product variety, and provide a superior customer experience.

This paper evaluates three frameworks for Windows application development - Delphi,
Windows Presentation Foundation (WPF) with the .NET Framework, and Electron. Each
development framework will create Windows applications but calls upon different languages,
libraries, IDEs, and compilation models. To assess these frameworks, this paper defines four
evaluation categories, describes 23 metrics, defines the benchmark application, and scores
each framework using a weighted evaluation. The benchmark, a Windows 10 Calculator clone,
assesses frameworks’ ability to re-create a known GUI and target the Windows desktop
environment.

Evaluation conclusions include:

1. Delphi and its RAD Studio IDE profoundly enhance development productivity and
product time-to-market. Not only that, developing one codebase to reach every desktop
and mobile platform simplifies successive releases and product maintenance.

2. WPF with the .NET Framework offers small teams native entry to Windows applications
and a solid IDE but struggles to match Delphi’s productivity, IP security, and
performance while also missing Delphi and Electron’s cross-platform features.

3. Electron offers a free alternative to Delphi and WPF, familiarity to front-end developers,
and cross-platform capability at the cost of IP protection, standard IDE tooling, and
application performance

=
iE)
=
=
&®
=

Delphi Delphi
WPF ‘
®

WPF

Electron

Performance
@
Flexibility
@

Electron
I 1

Low —» High Low —» High

Productivity Functionality

Figure 1 - Depiction of Framework Category Scores

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

O

Table of Contents

1. Introduction

2. Related Work

3. Methodology

3.1. Evaluation Categories

3.2. Metrics

3.3. Frameworks

3.4. Evaluation Strategy

4. Analysis

5. Conclusions

6. Future Work

Source Data and Community Input

Contributors

About Embarcadero Technologies

Appendix 1. Benchmark Application Specification

Appendix 2. Detailed Framework Analysis

Appendix 3. Framework Decompilation Analysis

O
Whitepaper | Discovering the Best Developer Framework Through Benchmarking %

13

20

21

22

23

24

25

29

37

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

~
Ny

1. Introduction

Today’s proliferation of software development tools is a cause for celebration while also
requiring more effort from decision-makers to critically assess the benefits and drawbacks of
common frameworks and IDEs. Although some tasks may require a specific tool, software
companies developing Windows desktop applications may choose from a variety of frameworks.
Given a choice, developers would benefit from choosing the framework, IDE, or tool that
measurably maximizes productivity and provides outstanding functionality, flexibility, and
performance. While this choice is ideally informed by solid research, popularity trends within the
industry and interest in the next “shiny” tool undeniably influence framework, IDE, and tool
selection. This paper aims to counter capriciousness and lay the groundwork for developer tool
comparisons by defining a benchmark methodology, applying it to Delphi, Windows Presentation
Foundation (WPF) with .NET Framework, and Electron using a calculator application, and
drawing conclusions about the productivity, functionality, flexibility, and performance of each
framework.

This paper is structured as follows: Section 2 introduces the history of developer tools and
discusses related academic tool comparisons. Section 3 describes the broad methodology of
this comparison in four categories, lays out specific metrics per category, introduces the
frameworks under comparison, and describes the evaluation benchmark application and
weighted comparison. Section 4 analyzes the metrics by category and Section 5 draws
conclusions.

2. Related Work

It should be no surprise that software developers and academics have conducted tests and
comparisons since the second-ever framework was released. A time-honored method of
comparison is the benchmark. Formalized in the 80s, Robert Camp’s widely accepted definition
of a benchmark is “the search for the best industry practices which will lead to exceptional
performance through the implementation of these best practices”.! Software industry
benchmarks are most frequently manifested as quantitative performance tests and evaluations,
such as task completion speeds, but can also be qualitative via scoring systems and weighted
assessments. The key to any benchmark is to apply the test equally to like systems from
different companies, avoiding an “apples-to-oranges” comparison, and to incorporate the
objective results into business decisions.

Since 2015, academia has produced over a dozen comparison papers? focusing with increasing
intensity on cross-platform frameworks for mobile application development, seeking to fill that
gap in academic literature.® While each paper’s focus varied, many used performance

! Camp, Robert C. Benchmarking: the search for industry best practices that lead to superior performance. Asq Press, 1989.

2 Majchrzak, Tim, and Tor-Morten Grgnli. "Comprehensive analysis of innovative cross-platform app development frameworks." In
Proceedings of the 50th Hawaii International Conference on System Sciences. 2017, Table 1.

3 Bigrn-Hansen, Andreas, Tim A. Majchrzak, and Tor-Morten Grgnli. "Progressive web apps: The possible web-native unifier for
mobile development." In International Conference on Web Information Systems and Technologies, vol. 2, pp. 344-351.
SCITEPRESS, 2017, p. 349.

4

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

~
Ny

benchmarking techniques and qualitative assessments to compare applications written to the
same level of functionality in different frameworks.* Seeing that recent literature lacked
evaluation cohesion and consistent metrics, Rieger and Majchrzak proposed a detailed
evaluation schema for future comparisons.® Their four-category, 31 metric schema, and
corresponding weighted evaluation table provide an excellent starting point for both qualitative
and quantitative comparisons.®

3. Methodology

3.1. Evaluation Categories

This paper evaluates frameworks supporting Windows development according to four
aspects of effectiveness: developer productivity, business functionality, framework
application flexibility, and end-product performance. Combined, these aspects examine a
framework’s impact on the entire business and product lifecycle. An excellent framework
will speed product development but should also nurture a maintainable codebase and
easily pair with in-house or 3" party tools. Some of the frameworks investigated offer
cross-platform options but analysis of them is outside the scope of this Windows-oriented
document.

Developer productivity is the measure of effort and code required for developers to
complete typical development tasks. Productivity directly impacts product time-to-market
and long-term labor costs so tools that increase developer productivity have substantial
impacts on business timelines and bottom lines. Productivity can be realized in two
distinct ways - reduced coding requirements due to native libraries and also IDE tools
like code-completion and visual design. IDEs with greater library breadth generally result
in fewer lines of code per application and produce a clean, lean codebase that minimizes
opportunities for bugs or maintenance problems later in the product life cycle.

Business functionality refers to a framework’s business suitability and impact on
long-term plans. Excellent functionality allows companies to easily build custom tools or
extensions, develop on a platform of their choosing, protect their source code from
exploitation, and have confidence that their applications will be maintainable for decades.

Application flexibility assesses the breadth of tasks addressable with the framework.
While IDEs and frameworks are Turing-complete, and thus technically infinitely flexible,
some are better suited to a task than others. Flexible frameworks allow businesses to
target a broad audience, build software for every application tier, and access operating
system functions and consumer hardware.

4 Willocx, Michiel, Jan Vossaert, and Vincent Naessens. "A quantitative assessment of performance in mobile app development
tools." In 2015 IEEE International Conference on Mobile Services, pp. 454-461. IEEE, 2015, pp. 455-456.

5 Rieger, Christoph, and Tim A. Majchrzak. "Weighted evaluation framework for cross-platform app development approaches." In
EuroSymposium on Systems Analysis and Design, pp. 18-39. Springer, Cham, 2016, p. 8-14.

6 Rieger and Majchrzak, 2016, p. 16.

5

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

p

~

N

o

e

Ny

Consumers judge applications in part by runtime performance. Businesses choosing the
framework with superior performance avoid customer dissatisfaction by minimizing wait
times and resource-use on slow machines.

3.2. Metrics

3.2.1. Productivity
Framework productivity will be evaluated according to the following metrics:

[P1] Development Time: Total hours spent writing the fully functional application from
scratch. This measurement assesses the value a framework’s productivity tools add to
an average developer with no prior task knowledge. Comprehensive documentation,
plentiful native libraries, code completion, and other IDE tools will allow the developer to
design and build the benchmark application more efficiently than would be the case in a
“standard” text editor.

[P2] Ul Design Approach: Does the framework’s IDE allow for graphical/visual
application creation and provide a “What you see is what you get” (WYSIWYG) view
model?’ IDEs that support development through “drag and drop” components or other
visual methods allow users to engage different methods of thought and creativity as they
work. Visual creation through WYSIWYG editors preclude businesses from needing
every version of physical hardware to view platform-native styling.

[P3] Developer Environment Tools: Does the framework IDE standard installation
include auto-completion, debugging, and emulation tools? Are multiple IDEs available for
the framework?® Frameworks with multiple development tools and a choice of IDE better
support individual development preferences, techniques, and requirements.

[P4] Speed Implementation Time: Total hours required to “speedrun” the application
using a known solution. This measures the number of actions and volume of code
required to complete the full application by an expert developer with perfect knowledge
of a working solution. Productive frameworks reduce development time on repetitive, but
slightly altered tasks.

[P5] Code Size: Total lines of code the developer must write, adhering to accepted
formatting and styles, to create a fully functional application. This objective measure of
code volume sheds light on the difficulty of future code maintenance - more code
typically requires more time to learn and troubleshoot.

[P6] Application Store Deployment: Does the framework’s IDE facilitate direct
deployment to native platform application stores (i.e. iOS App Store, Android's Google
Play, Microsoft Store)? Frameworks with built-in deployment features reduce product

7 Rieger and Majchrzak, 2016, p. 11.
8 Rieger and Majchrzak, 2016, p. 10.

" Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

S
S

deployment complexity, limiting errors that could occur or compound, and time-to-market
for initial products and updates/bug-fixes.

3.2.2. Functionality
Framework functionality will be evaluated according to the following metrics:

[F1] License: Does the license allow the development of commercial applications and at
what cost? Is the licensing difficult to understand? Proprietary frameworks and tools may
require one-time or recurring payments and have different levels of licenses according to
the commercial applications desired.® Open-source frameworks may have
license-specific restrictions.

[F2] Long-term Feasibility: Does the framework have a history of stability, backward
compatibility between major releases, bug fixes, and security updates?'® This metric
highlights the confidence businesses can enjoy or the strategic risk they may take when
choosing a framework.

[F3] Supported Development Platforms: Can application development occur on any
major operating system or does the framework IDE impose limitations? This metric
indicates how a framework may hinder a team without homogenous equipment.

[F4] Testing Support: Does the framework ship with a testing suite, test coverage
analysis, and runtime monitoring capability?'"

[F5] Tool Extension: Can the framework be extended in its own language? Frameworks
that require plug-ins, extensions, or modifications to be written in a different language
impose costs on businesses that require altered functionality. Rather than creating the
required tool from resident knowledge, businesses may have to invest time and
resources to hire an external contractor or build in-house skills in that alternate language.

[F6] Accessibility: Do programs built with the framework support the major OS
accessibility features like screen readers and font size/color changes?

[F7] Intellectual Property Security: How secure is the intellectual property of the
source code in a deployable project? After businesses invest resources into their
projects, they face the challenge of putting their product into the hands of the public while
protecting the code and techniques that produce revenue. This qualitative metric
evaluates the ability of a user to access source code via decompilation.

3.2.3. Flexibility

Framework flexibility will be evaluated according to the following metrics:

° Rieger and Majchrzak, 2016, p. 8.
"0 Rieger and Majchrzak, 2016, p. 10.
" Rieger and Majchrzak, 2016, p. 11.

7

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

S
S

[X1] Supported Target Platforms: How many user-platforms can the framework deploy
an application to? Great frameworks will support most platforms on the market, whether
mobile, desktop, 32-bit, or 64-bit. Businesses benefit from multi-platform support
because they can develop and maintain one codebase to reach many customers. One
codebase rather than separate code for each target application reduces development
time, bug potential, maintenance requirements, and time-to-market for new features.

[X2] Project Variety: Does the framework support development of different types of
applications from stand-alone desktop apps to Windows services? Flexible frameworks
allow developers to create mobile applications, desktop services, and everything in
between.

[X3] Scalability: Can the code be partitioned into subcomponents based on architectural
design? Is the framework suitable for client, middle-tier, and backend systems?
Frameworks that support modularity and multiple design tiers are better suited for large,
enterprise applications and specialization among multiple teams working on the same
project.’

[X4] Database Access: Does the framework contain native libraries supporting
database access? Data persistence is critical for many applications and must be
user-friendly and integrated with any good development framework.

[X5] Access to Device-specific Hardware: Does the framework facilitate access to
data from device sensors (GPS, microphone, accelerometers, camera, etc.) and physical
action through similar devices?' Frameworks that “throw open the doors” to the plethora
of sensors and actuators available on smart devices today create business opportunities
and novel solutions to consumer pain.

[X6] Access to Platform-specific Functionality: Does the framework allow
applications to interact with the host platform’s operating system and access its services
like file system access, contact list, battery state, and push notifications?' Access to
core OS functions prevents code duplication, avoids presenting potentially inconsistent
data to users, and provides increased ways to collect and analyze information.

3.2.4. Performance
Framework performance will be evaluated according to the following metrics:

[R1] Deployment Requirements: What is the file size/number of files for the compiled
project? Larger application sizes require more storage on user devices and longer
download times while numerically more files can increase deployment complexity.

'2 Rieger and Majchrzak, 2016, p. 10.
'3 Rieger and Maijchrzak, 2016, p. 12.
4 Rieger and Majchrzak, 2016, p. 12.

8

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

P

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

~
Ny

[R2] Startup Time: Over 100 executions, what is the average time from command to a
visible application ready for user input when started on a local machine and over a
network? Frameworks producing applications with shorter start-up times facilitate good
user experiences and minimize system resources required before the application is
useful.

[R3] Standing Memory Usage: How much memory is required for the application to run
while idle as measured by a task manager tool? Better frameworks produce applications
requiring lower overhead when the user isn’t actively using them, thus conserving total
system resources.

[R4] Peak Memory Usage: What is the maximum memory required for the program from
startup through heavy use as measured by the Windows Task Manager?

3.3. Frameworks

This paper compares Embarcadero Technologies’ RAD Studio, Microsoft's WPF with .NET
Framework, and Electron.

3.3.1. Delphi

Delphi, encapsulated in the Rapid Application Development (RAD) Studio IDE, is
Embarcadero Technologies’ flagship product. A proprietary version of the Object Pascal
language, Delphi features graphical application development with “drag and drop”
components, a WYSIWYG viewer for most mobile platforms, and robust style options
including platform-standard and unique IDE palettes. Among other features, included
libraries provide GUI controls, database access managers, and direct access target
platform hardware and platform operating systems.

Delphi offers two distinct frameworks - the Visual Component Library (VCL) for 32-bit
and 64-bit Windows applications and the FireMonkey (FMX) framework for 32-bit and
64-bit cross-platform applications on Windows, macOS, Linux, Android, and iOS. The
FireMonkey framework allows businesses to develop and maintain one codebase while
reaching most of the market. Delphi VCL has been available for over 25 years and
Delphi FMX for nine years.

3.3.2. Windows Presentation Foundation with .NET Framework

Microsoft's Windows Presentation Foundation is a GUI development system that uses
DirectX and the eXtensible Application Markup Language (XAML) to separate user
interfaces from business logic. Microsoft’s Visual Studio is the native IDE for WPF and
provides a WYSIWYG view of WPF applications along with drag-and-drop components
for visual design. .NET Framework libraries included with every Windows installation
provide a plethora of user interface controls and WPF supports complete style creation
and modification. WPF will compile to a native Windows binary for installation on the

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

N

o

e

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

~
Ny

Windows desktop or to an XAML Browser Application for cross-platform use in web
browser sandboxes. WPF has been available for over 15 years.

3.3.2. Electron

Electron is an open-source (MIT License), Chromium-based framework that utilizes web
technologies to build desktop applications on Windows, macOS, and Linux. It was
originally developed by and is still maintained by GitHub (a subsidiary of Microsoft).
Electron combines the Chromium-based rendering engine with the Node.js runtime. As
such, the user interface for an Electron application is available via HTML5 and CSS.
Generally, Electron works with most Javascript frameworks such as Angular, Vue.js, and
React. The HTML5, CSS, and Javascript-based technologies found in Chromium provide
for a rich ecosystem of user customization familiar to any web developer. Electron has
been available for over 5 years.

3.4. Evaluation Strategy
3.4.1. Benchmark Application

The benchmark application for this comparison is a clone of the Windows 10 “Standard”
calculator that ships with every Windows installation. While the calculator logic itself is
not complex, the application will test each framework’s ability to emulate a known
product and allow side-by-side comparisons. Additionally, it evaluates the ability of a
framework to create a small application for the target platform - Windows - and to mimic
the Window’s style used for the calculator.

Calculator = O X

S5 +6 49 b+ 35 =

70

M+ M- MS

Yo CE C &
Y x? ix e
7 8 9 x
4 5 6 b
1 2 3 o

- 0

Figure 2 - Windows 10 Calculator Benchmark

This benchmark application is targeted to Windows specifically. While some frameworks
are multi-platform capable, analysis of compiled code on non-Windows platforms will not

10

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Y
S

be accomplished in this paper. This calculator is also a “lightweight” application which
limits how much performance differences may be extrapolated to more complex
applications. Reference Appendix 1 for the full specification of the calculator benchmark
application as it was implemented by independent contractors.

The benchmark application will be analyzed according to the qualitative metrics laid out
in section 3.2. The source code of each application will be examined to count total lines
of code, the number of developer-typed lines according to their application instructions
(one of the contract deliverables), and the number of lines focused on the user interface
specifically. Application startup time from local and network storage locations will be
tested using AppTimer, a free startup benchmarking tool. Finally, application memory
use will be measured using the free MiTeC Task Manager Deluxe tool.

3.4.2. Weight Profiles

In order to facilitate the comparison of frameworks that serve similar but not identical
purposes, this paper will use a weighted evaluation mechanism similar to that proposed
by Rieger and Majchrzak." Each of the 23 metrics will be given a weight between 71 and
7 points, summing to 100." Frameworks will be evaluated in each category and
assigned a score between 0 (unsatisfied) and 5 (optimally satisfied)."”” When the metric is
a direct, quantitative comparison between frameworks (i.e. startup times), the objectively
“‘winning” framework will score a 5, the “middle” framework a 3, and the “losing”
framework a 7. Once calculated, the weighted score will fall between 0 and 5 and
indicate which framework better satisfies these 23 criteria. See Table 1 for the metric
weights and the emphasis placed on each evaluation category.

[%
\ "V 1 ?fs,;;:‘—*' ad
A— a 1 _ : 4

— .

1’ Rieger and Majchrzak, 2016, p. 15.
16 Rieger and Majchrzak, 2016, p. 15.
i Rieger and Majchrzak, 2016, p. 15.

11

0 Embarcadero Technologies, Inc. | Source Data Repository

https://www.passmark.com/products/apptimer/
https://www.mitec.cz/tmx.html
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

7

C

)
"/

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

12

Framework Comparison ‘

Criterion Weight (%) | Delphi | WPF Electron
P1: Development Time 7
P2: Ul Design Approach 7
P3: Developer Environment Tools 5
P4: Speed Implementation Time 2
P5: Code Size 4
P6: App Store Deployment 4
Productivity Total 29%
F1: License 2
F2: Long-term Feasibility 6
F3: Development Platforms 2
F4: Testing Support 6
F5: Tool Extension 3
F6: Accessibility 1
F7: IP Security 4
Functionality Total 24%
X1: Target Platforms 7
X2: Project Variety 3
X3: Scalability 5
X4: Database Access 4
X5: Hardware Access 6
X6: Platform Access 6
Flexibility Total 31%
R1: Deployment Requirements 5
R2: Startup Time 4
R3: Standing Memory Usage 4
R4: Peak Memory Usage 3
Performance Total 16%
Weighted Score (5 is best) 100%

Table 1 - Weighted Criteria Schema

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

O
o

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

I
S

4. Analysis

The benchmark application - a Windows 10 Calculator clone - was recreated in each framework
by three Delphi Most Valuable Professionals (MVPs) volunteers, one expert freelance WPF
developer, and one expert Electron freelance developer. Furthermore, proposals were received
from 16 other WPF developers and 8 other Electron developers to gauge the average
development time expected by professionals in each field. Quantitative analysis of each
benchmark application and expert-assisted qualitative research resulted in the completed
Framework Comparison of Table 2. Each section will be discussed in more detail in the following
sections and the detailed analysis of each metric can be found in Appendix 2.

Framework Comparison

Criterion Weight (%) Delphi WPF | Electron
P1: Development Time 7 5 1 3
P2: Ul Design Approach 7 5 3 3
P3: Developer Environment Tools 5 4 4 4
P4: Speed Implementation Time 2 3 1 5
P5: Code Size 4 3 1 5
P6: App Store Deployment 4 5 1 2
Productivity Total 29% 1.28 0.58 1
F1: License 2 3 3 5
F2: Long-term Feasibility 6 5 4 3
F3: Development Platforms 2 2 2 5
F4: Testing Support 6 4 3 4
F5: Tool Extension 3 5 3 3
F6: Accessibility 1 4 4 5
F7: IP Security 4 5 2 1
Functionality Total 24% 1.03 0.73 0.8
X1: Target Platforms 7 5 2 3
X2: Project Variety 3 5 4 3
X3: Scalability 5 5 5 5
X4: Database Access 4 5 5 4
X5: Hardware Access 6 5 3 3
X6: Platform Access 6 5 4 3
Flexibility Total 31% 1.55 1.13 1.07
R1: Deployment Requirements 5 5 3 1
R2: Startup Time 5 3 1

13

O

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

14

R3: Standing Memory Usage 4 5 1 3
R4: Peak Memory Usage 3 5 3 1
Performance Total 16% 0.8 0.4 0.24
Weighted Score (5 is best) 100% 4.66 2.84 3.1

Table 2 - Scored Evaluation Metrics

4.1. Productivity

Framework productivity was evaluated according to five metrics that sought to capture
how a framework and IDE can speed application time-to-market. Productivity scores are
found in Table 3 and development data in Table 4.

Productivity Comparison

Criterion Weight (%) Delphi WPF Electron
P1: Development Time 7 5 1 3
P2: Ul Design Approach 7 5 3 3
P3: Developer Environment Tools 5 4 4 4
P4: Speed Implementation Time 2 3 1 5
P5: Code Size 4 3 1 5
P6: App Store Deployment 4 5 1 2
Productivity Total 29% 1.28 0.58 1

Table 3 - Productivity Scores

Framework Productivity

Electron
Development Time (hrs) 4.667 10.000
Final Speedrun (hrs) 1.347 0.550
Total Lines of Code 398 293
Lines of Code for Ul 72 115
Ul % of Code 18% 39%

Table 4 - Benchmark Productivity Indicators

Product time-to-market can make or break a business. This benchmark evaluated
“time-to-market”, called Development Time, and found that three expert Delphi

developers completed their VCL or FMX Win10 calculator clone in an average of 4.66
hours, the Electron application took twice as long, and the WPF application six times as
long. This disparity can be partially attributed to requirements each framework imposes
for GUI development. Although the Delphi applications were not the shortest programs of

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o

Whitepaper | Discovering the Best Developer Framework Through Benchmarking P

the comparison, the lines of code developers wrote for the GUI comprised only 18% of
their typed total. The RAD Studio IDE allowed them to rapidly design and initialize the
GUI using standard control components in the drag-and-drop Form Designer and
property-modification Object Inspector, minimizing the developers’ need to initialize the
calculator interface in code. In comparison, 39% of the Electron application’s
developer-written code forms the GUI and 49% of the WPF developer’s code supports
the calculator GUI. While Microsoft’s Visual Studio supports drag-and-drop controls and
visual GUI development for WPF, the framework requires more XAML code to make the
GUI work than Delphi, slowing the design process. Another factor influencing
development time is the amount of code required to connect the calculator logic to the
user interface. Requiring 680 total lines of code between three files and in two
languages, it isn’t a surprise that the WPF application took the last place. Clearly,
Delphi’s visual-development interface and native control libraries are a substantial asset
to initial development productivity, allowing the work to occur more quickly or a
more-sophisticated GUI to be developed in the same amount of time.

Speed implementation time - evaluated by a “speedrun” re-implementation - tested the
level of effort each framework required to complete a known task and was influenced by
code size and IDE tools and features. The Electron application, with the fewest lines of
code, was the fastest to rebuild at 35 minutes. The Delphi calculator average was twice
as long, owing to slightly more code and the process of visually designing the
application. Bringing up the rear was WPF with the largest codebase. Overall, speed
implementation time is directly related to code size and shows that Delphi and Electron
are more concise than WPF, an advantage for developers who frequently implement
similar functions.

A final aspect of product development productivity is the time required to get the
application to the user. Delphi scores top marks in this metric. The RAD Studio IDE
automates application deployment to the app stores for all major desktop and mobile
applications, eliminating the headache of manual deployment and ensuring the process
is bug-free and repeatable. WPF and Electron struggle in this regard - WPF cannot be
deployed directly to the Microsoft Store without conversion to a different framework and
Electron can only deploy to the Microsoft Store with the help of 3rd party tools.
Businesses should keep this “last mile” aspect of product development and deployment
in mind when selecting a framework for their application.

4.2. Functionality

Framework functionality was examined qualitatively through research and conversation
with experts in Delphi, WPF, and Electron and sought to analyze the business use of
each framework from investing in the technology through long-term maintenance of the
products created. Functionality scores are displayed in Table 5.

15

" Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

7

Y

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

S

16

Functionality Comparison ‘

Criterion Weight (%) Delphi WPF Electron
F1: License 2 3 3 5
F2: Long-term Feasibility 6 5 4 3
F3: Development

Platforms 2 2 2 5
F4: Testing Support 6 4 3 4

F5: Tool Extension 3 5 3 3

F6: Accessibility 1 4 4 5

F7: IP Security 4 5 2 1
Functionality Total 24% 1.03 0.73 0.8

Table 5 - Functionality Scores

When businesses choose Delphi as their development framework, they are investing in a
proprietary framework (that includes runtime library source code) with up-front costs and
an optional annual update fee. For this price, they gain a stable, backward compatible,
and growing framework and can be confident that applications developed today will be
supported and maintainable in 2045. Delphi ships with testing software and also gives
businesses the opportunity to develop tools and extensions for the framework using the
same talent that builds their product (the Delphi IDE is programmed in Delphi). Some
drawbacks to Delphi include its Windows-only IDE and limited accessibility support for
compiled programs under one of its frameworks, a shortfall that Embarcadero
Technologies is working to remedy.

Windows Presentation Foundation with .NET Framework offers businesses an
economical framework with the full backing of Microsoft but includes all the challenges
Microsoft’s choices induce. WPF has a shorter history than Delphi but was open-sourced
in 2018, giving the GUI aspect of application development a brighter long-term outlook
despite its ties to the proprietary .NET Framework for most Windows development. WPF
offers testing libraries through Visual Studio and businesses can enjoy the large 3rd
party tool and extension environment but may need to outsource work to build their own
extensions or invest in talent for non-WPF languages. WPF offers slightly greater
accessibility than Delphi, especially in its browser app deployment. Like Delphi, WPF
applications using .NET Framework must be compiled on Windows machines.

Electron is a free, open-source platform offering businesses the opportunity to develop
applications from any major operating system. Electron’s future is uncertain, however. It
is the newest of the three frameworks and still in its honeymoon phase. It lacks a native
IDE, giving businesses a choice but also removing some conveniences like integrated
compilation and included testing libraries. Businesses developing in-house tools would
have a more difficult time with Electron than the other frameworks. Electron provides

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

7

Y

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

S

17

excellent accessibility options for all major desktop platforms through its Chromium
foundation.

Intellectual property protection is fundamentally important to long-term business plans. If
a product solves a new problem or utilizes a novel technique, the developers should
understand how their choice of framework affects IP vulnerability. Delphi programs
compile into platform-native machine code rather than intermediate code. Decompilation
using free tools can recover the GUI form but only yields assembly code for the logic. IP
security is more tenuous in WPF. Decompiling executable and library files with free tools
results in recognizable C# business logic and nearly recognizable XAML text. Finally,
Electron has the most significant problem - it gives away source code with each
installation by default. Electron application code can be recovered with a simple text
editor - a function of how the framework is structured - but can be somewhat obfuscated
using 3rd party tools. Appendix 3 describes available decompiler tools and their results
when applied to each framework’s calculator application.

Overall, Delphi provides the most assured long-term outlook, best intellectual property
security, and easiest in-house customization at the cost of a one-time commercial
license purchase. WPF’s barrier to entry is lower and it offers better accessibility options
but is subject to Microsoft’s .NET overhauls, is more difficult to customize, and can be
decompiled with ease. Electron is absolutely free and can be developed on each of the
three major desktop platforms but pays for that flexibility via its uncertain long-term
outlook and by relying on corporate sponsorships and community support for additional
development.

4.3. Flexibility

Framework flexibility was examined qualitatively through research and conversation with
experts in Delphi, WPF, and Electron and sought to analyze the application of each
framework to business problems and requirements. Flexibility scores are displayed in
Table 6.

Flexibility Comparison

Criterion Weight (%) Delphi WPF Electron
X1: Target Platforms 7 5 2 3
X2: Project Variety 3 5 4 3
X3: Scalability 5 5 5 5
X4: Database Access 4 5 5 4
X5: Hardware Access 6 5 3 3
X6: Platform Access 6 5 4 3
Flexibility Total 31% 1.55 1.13 1.07

Table 6 - Flexibility Scores

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Y
S

Delphi’s major advantage over WPF and Electron is that its FMX framework can deploy
one body of source code as a binary to any major desktop or mobile platform,
maximizing a business’s reach to customers and minimizing code duplication and
maintenance/upgrade headaches. It can support projects of every size from logic
controllers for industrial automation to world-wide inventory management and be
developed for every tier from a database-heavy back end to the GUI client-side of an
application. Finally, Delphi’s standard libraries provide easy access to nearly every
database type available and allow developers to access operating system functionality
on every platform as well as interact with /O devices and hardware sensors.

WPF with .NET Framework targets Windows computers directly and provides
cross-platform support through a browser deployment from a similar codebase. The
framework is primarily geared toward client-side desktop applications but can incorporate
business logic in C# for middle-tier or back-end functions and access the ADO .NET
Entity Framework for databases. WPF can access Windows operating system
functionality and I/O devices through .NET libraries but with managed code after
compilation rather than native code.

Electron is an open-source framework targeting all desktop operating systems through
its Chromium browser base. It focuses on client-side applications, typically web-centric,
but uses node.js for middle-tier and back-end services. Electron provides hardware
access from its node.js process and can access some but not all operating system
functions via node.js libraries.

After reviewing all three frameworks, Delphi holds the lead in the flexibility category due
to its flexible and automated deployment to all major platforms, scalability to every level
of development, and visual design system. WPF with .NET Framework is competitive on
the Windows platform but lacks the ability to compete on macOS or mobile devices.
Finally, Electron has the fewest barriers to entry and the most development tool options
but relies heavily on manual deployments, cannot target mobile devices directly by
default, is the least scalable, and lacks the same hardware and operating system access
of its competitors.

18

0 Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

4.4. Performance

Delphi, WPF, and Electron were evaluated according to the performance of their

deployed applications using startup times, peak and idle memory use, and file numbers

and sizes. Performance scores are found in Table 7.

Performance Comparison

Criterion Weight (%) Delphi WPF Electron
R1: Deployment
Requirements 5 5 3 1
R2: Startup Time 4 5 3 1
R3: Standing Memory
Usage 4 5 1 3
R4: Peak Memory
Usage 3 5 3 1
Performance Total 16% 0.8 0.4 0.24
Table 7 - Performance Scores
o : d Deplo

Delphi WPF Electron Win10
Deployed File Size (MB) 6.4 0.1 0.3
Deployed Files 1 2 1
Startup (local) 0.239 0.471 0.243
Startup (network) 0.439 0.643 0.259
Fastest startup (local) 0.175 0.391 0.068
Fastest startup (network 0.264 0.564 0.106
Slowest startup (local) 0.687 0.814 0.872
Slowest startup (network) 2.416 2.106 0.925
Startup Std Dev (local) 0.070 0.054 0.127
Startup Std Dev (network) 0.329 0.178 0.117
Peak Memory Use (MB) 30.4 50.4 64.1
Idle Memory Use (MB) 211 20.4 36.0

Table 8 - Benchmark Performance Indicators

Each framework deployed its calculator differently. Delphi created one executable file that

averaged 6.4 MB. WPF created an executable file and library file totaling less than 0.1 MB. The
heavy-weight of the group, Electron produced 161 files totaling 198 MB due to its Chromium

19

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o

Whitepaper | Discovering the Best Developer Framework Through Benchmarking P

browser. Although lighter weight due to its use of the .NET Framework installed on every
Windows computer, WPF scored lower than Delphi due to producing two files. In general, one
file will be easier to manage than multiple files, can negate the need for an installer or scripts to
update the application, and reduces network bandwidth requirements and hard drive use.

Table 8 shows the average startup times of each framework’s application from a local hard
drive. The three Delphi applications posted the shortest times, with WPF taking about twice as
long and Electron longer still. When started from a networked hard drive, WPF took the lead
from Delphi but the small size of both framework applications limits the extrapolation of that data
point. A standard deviation analysis identified Electron as the framework with the most
consistent local startup times but least consistent networked times. In fact, the slowest Electron
network startup time was 19.66 seconds - twenty-three times slower than its slowest local time -
indicating that Electron apps would be best deployed locally for consistent user experiences and
might pose a significant problem for enterprises with large networked services or remote
employees. WPF’s slowest time was faster than the other frameworks, consistent with its small
standard deviation. Delphi’s times varied more than WPF’s but its faster average times provide
the best user launch experience.

Testing found that the Delphi VCL framework used the least peak and idle memory, settling
down to just 3.5 MB. Delphi’s FMX framework consumed quite a bit more, peaking at 41 MB and
idling at 32 MB. Both Delphi variants posted the lowest peak memory use, followed by WPF and
then Electron. Electron edged out the Delphi FMX idle memory use at 20.4 MB but had the
highest startup memory requirements of the three frameworks.

5. Conclusions

This paper sought to compare Delphi, Windows Presentation Foundation, and Electron - three
competing frameworks for modern application development - in the areas of developer
productivity, functionality for decision makers, flexibility for product development, and product
performance using a benchmark application. Calculator development by experts in each
framework, qualitative research, and consultation resulted in several salient conclusions for
business decision-makers: First, Delphi and its RAD Studio IDE profoundly enhance
development productivity and product time-to-market. Not only that, developing just one
codebase to reach every desktop and mobile platform provides businesses advantages through
simplified successive releases and product maintenance. Second, WPF with the .NET
Framework offers small teams native entry to Windows applications and a solid IDE but
struggles to match Delphi’s productivity, IP security, and performance while also missing Delphi
and Electron’s cross-platform features. Lastly, Electron offers a free alternative to Delphi and
WPF, familiarity to front-end developers, and cross-platform capability at the cost of IP
protection, standard IDE tooling, and application performance.

Overall, the three frameworks this paper evaluated showed their strengths in different areas of
product development and performance but Delphi demonstrated consistent strength across

20

" Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o ’
J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

each evaluation category and scored 4.66 out of 5 points, outperforming Electron (3.11 points)
and WPF with the .NET Framework (2.85 points). Based on this comparison, businesses
seeking to build robust products with long lifecycles and wide market reach should strongly
consider investing in Delphi, and it's RAD Studio IDE.

6. Future Work

This study and its benchmark application examined only three frameworks for Windows and
focused on productivity related to GUI design and application performance. Future white papers
from Embarcadero will work to round-out the study of these frameworks by examining database
support with an RSS reader/PostgreSQL application, website interactions through REST
services and APlIs using a GitHub Recent Explorer application, operating system support and
interaction using a File Browser application, and multi-screen interaction with a Screenshot
History application. Other groups wishing to contribute to this comparison effort should consider
unmentioned functions frameworks must handle, incorporate a wider variety of frameworks
(Xamarin, Spring, Cordova, etc.), and challenge existing conclusions with new tests and more
research.

This paper may undergo several revisions as Embarcadero refines its understanding of the data
collected in this study.

——
=
f

21

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o

P

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

S
S

References

Bigrn-Hansen, Andreas, Tim A. Majchrzak, and Tor-Morten Grgnli. "Progressive web apps: The possible
web-native unifier for mobile development." In International Conference on Web Information Systems and
Technologies, vol. 2, pp. 344-351. SCITEPRESS, 2017.

Dalmasso, Isabelle, Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. "Survey, comparison and
evaluation of cross platform mobile application development tools." In 2013 9th International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 323-328. IEEE, 2013.

Delia, Lisandro, Nicolas Galdamez, Pablo Thomas, Leonardo Corbalan, and Patricia Pesado.
"Multi-platform mobile application development analysis." In 2015 IEEE 9th International Conference on
Research Challenges in Information Science (RCIS), pp. 181-186. IEEE, 2015.

Majchrzak, Tim, and Tor-Morten Grgnli. "Comprehensive analysis of innovative cross-platform app
development frameworks." In Proceedings of the 50th Hawaii International Conference on System
Sciences. 2017.

Rieger, Christoph, and Tim A. Majchrzak. "Weighted evaluation framework for cross-platform app
development approaches." In EuroSymposium on Systems Analysis and Design, pp. 18-39. Springer,
Cham, 2016.

Willocx, Michiel, Jan Vossaert, and Vincent Naessens. "A quantitative assessment of performance in
mobile app development tools." In 2015 IEEE International Conference on Mobile Services, pp. 454-461.
IEEE, 2015.

]
Source Data and Community Input

The complete codebase for this comparison paper along with project specifications and notes on
individual calculator adherence to the specification are available on GitHub in the public
ComparisonResearch/calculator repository. Embarcadero encourages readers to examine the
calculators submitted by contractors and MVPs, compare code and methods, find errors and
improvements, and to learn from this project.

Have a suggestion for improving this paper series? Submit a GitHub repository Issue!

22

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/issues
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

- S

O

Contributors

Embarcadero Technologies, Inc.

Marco Cantu
Adam Leone
Jim McKeeth

David Millington

RAD Studio Senior Product Manager
Software Development Intern
Chief Developer Advocate & Engineer

RAD Studio Senior Product Manager

Embarcadero Most Valuable Professionals (MVPs)

lan Barker

Bob Calco

Javier Gutiérrez Chamorro
Olaf Monien

Francois Piette

Patrick Prémartin

Yilmaz Yoru

codedotshow.com

Apex Data Solutions

javiergutierrezchamorro.com

developer-experts.net

francois-piette.blogspot.com

developpeur-pascal.fr

yyoru.com

Independent Contractors

Serhii K.
Eli M.
Martin P.
Dhiraj S.
Heru S.
Victor V.

23

upwork.com/fl/serhiik

upwork.com/freelancers/~015a0a19afc2593d77

github.com/martin-pettersson

upwork.com/freelancers/~01139eb7cc53906988

upwork.com/freelancers/~0195227b473e36e942

upwork.com/freelancers/~01393e5253b24c66e9

o Embarcadero Technologies, Inc. | Source Data Repository

https://www.codedotshow.com/blog/about/
https://apexdatasolutions.com/news/apex-blog/
https://www.javiergutierrezchamorro.com/
https://www.developer-experts.net/en/about-us/
http://francois-piette.blogspot.com/
https://developpeur-pascal.fr/page/_0-a-propos-de-l-auteur.html
http://www.yyoru.com/
https://www.upwork.com/fl/serhiik
https://www.upwork.com/freelancers/~015a0a19afc2593d77
https://github.com/martin-pettersson
https://www.upwork.com/freelancers/~01139eb7cc53906988
https://www.upwork.com/freelancers/~0195227b473e36e942
https://www.upwork.com/freelancers/~01393e5253b24c66e9
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking
O

About Embarcadero Technologies

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professions so they can design systems right, build them faster, and
run them better regardless of platform or programming language. Ninety of the Fortune 100 and
an active community of more than three million users worldwide rely on Embarcadero products
to increase productivity, reduce costs, simplify change management and compliance, and
accelerate innovation. Founded in 1993, Embarcadero is headquartered in San Francisco with
offices located around the world. Download a free trial at www.embarcadero.com.

|||!.||||I|Iu., |

)} 7% ..>|Ims|lvn

24

o Embarcadero Technologies, Inc. | Source Data Repository

http://www.embarcadero.com/
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o ’
J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

Appendix 1. Benchmark Application Specification

The following specification was provided to the independent contractors and MVPs that
developed the benchmark application in Delphi, WPF, and Electron. Embarcadero project
managers answered questions as needed, updated the specification with additional details, and
strove to keep each application true to the specification.

]

Calculator

October 29, 2020

Overview

The goal of this Calculator project is to build a generic calculator that looks and
functions nearly identically to the standard view of the Windows 10 calculator. This is a
prototype! The emphasis of this project is on the lessons learned during the
development process and documentation phase. The end result does not require a huge
amount of polish but should look reasonably similar and function as closely as possible
unless otherwise noted in this specification.

Your goal while building the Calculator is to explore the strengths and weaknesses of
the framework you are using. The app should be built completely once to figure out your
approach. Once complete, build the app again from scratch while recording your screen.
Finally, document the app creation process in a step-by-step manner (similar to a recipe
- what would someone else need to know to build the app in its entirety - configuration,
code, testing, etc.), noting where your framework/language/toolset helps or hinders the
build process.

Key Features

e Responsive Layout
e Semi-Transparent Window

e Basic Math Operations

25

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

O
Whitepaper | Discovering the Best Developer Framework Through Benchmarking %

O

Requirements

Theme

The Calculator should feature a look similar to the below. Note the brighter color palette
for number, digit, and sign buttons, darker palette for operator/function buttons, and dark
grey palette for the display field. The “equals” button is a cornflower blue shade. All
buttons but the equals button change to a darker grey shade when the mouse rolls over
and becomes darker again when clicked. The equals button has the same behavior but
in blue shades. Note that the window and controls are semi transparent.

Calculator —] x

- Standard

- Additiersl
; 32

26

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o ’
J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

Transparency

The calculator window should be semi-transparent if it will not take more than 5 hours to
add that feature.

Layout

The goal here is to get close to the layout of the Windows calculator. It is broken up into
two sections. The top section which shows the equation entered and the number
entered/result. The bottom section contains input buttons for digits, mathematical
operations, and functions.

Responsive

The Calculator interface should resize automatically to the size of the window that
contains it. Changing the width/height should not result in blank areas or awkward
spaces between buttons.

Memory Buttons
The memory buttons are not required.
Functions

The calculator must imitate Windows 10 calculator function to the maximum extent
possible. The following is not an all-inclusive list of behaviors:

e Does not respect operator precedence. Operands are calculated from
left-to-right.

e If a number is entered and “=" pressed, it appears in the Equation View as the
number with an equals sign. Ex. “0 ="

e After an operator (+, -, *, /) is clicked, the first operand remains visible until a new
number is entered for the second operand.

e Numbers and operators can be “chained” and appear in sequential order in the
Equation View. The running result is displayed in the Entry/Answer View (largest
font) whenever a new operator is clicked.

e If the equals button is clicked after already solving an equation, the last operation
is applied to the current result and the Equation View and Entry/Answer Views
are updated.

27

o— Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

o ’
J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

The backspace button will remove one digit at a time from the current number in
the Entry/Answer View. If the equation has been solved, it will erase the Equation
View.

The ‘CE’ button will completely erase the current number in the Entry/Answer
View. If the equation has been solved, it will clear both the Equation View and the
Entry/Answer View.

The ‘C’ button will fully reset the calculator Views whenever pressed.

The square, square root, and 1/x buttons will immediately act on the current
number in the Entry/Answer field so that the result is displayed and will update
the equation in the Equation View..

The change sign button will immediately act on the current number in the
Entry/Answer field so that the result is displayed.

The percent button will behave in accordance with the Microsoft algorithm found
here.

Project Items

1.

3.

Complete source code for your working calculator. Include a compiled executable
if applicable or instructions for executing the code if not.

. A video capture of the second build process. This must be in real-time (not sped

up) and executed manually (without auto-typing or other speed features). The
intent is to get a realistic view of the effort required to make this calculator by a
competent programmer.

A document with step-by-step instructions that walk someone unfamiliar with your
development environment, tools, and language through the process of building
this calculator to its full functionality. This document can be a .docx, .pdf, or
Google Document format. Markdown usage is preferred.

Iterative Feedback

Please provide feedback to us during the development process so we can help speed
up the development. We have many many years of experience and are here to help you
get the project done as fast as possible

28

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Appendix 2. Detailed Framework Analysis

Framework Evaluation

P1: Development Time

Three expert Delphi developers completed the Calculator in an average of
4.66 hours using RAD Studio. One developer used his Delphi calculator code
and a 3rd party library to create an Electron calculator in 7 minutes,
demonstrating the code-reusability of Delphi.

Delphi

One expert WPF developer completed the Calculator in 30 hours using Visual
WPF Studio. 16 other WPF estimates were received ranging from 8 hour to 100 1
hours with a mean of 53 hours and a mode of 80 hours.

One expert Electron developer completed the Calculator in 10 hours using
Angular for the calculator logic and Electron for the GUI. Eight other Electron
estimates were received ranging from 15 to 80 hours with a mean of 47 hours
and a mode of 20 hours.

P2: Ul Design Approach

Delphi's RAD Studio IDE offers a What-You-See-Is-What-You-Get
(WYSIWYG) design experience with drag-and-drop components for visual GUI
design. The designed GUI can be viewed using native
Android/iOS/Windows/macOS styling or custom styles and in a simulated
Delphi mobile device of varying screen sizes. Components can also be resized and 5
have their properties adjusted in the Object Inspector without touching code,
allowing rapid prototyping through visual development. Delphi also offers the
ability for a developer to edit the Ul using a simple YAML style language
definition.

Electron

WPF in Visual Studio offers a WYSIWYG design experience, immediately
reflecting code changes in the GUI representation, and drag-and-drop visual
WPF design. Developers can also change object properties through context menus 3
apart from the code. WPF also offers the ability to edit the Ul via an XML-like
language definition called XAML.

Electron lacks a native IDE but can be developed using text editors and

command line tools, Electron doesn’t include a WYSIWYG design experience
Electron or drag-and-drop components by default. The Ul can be created using HTML5 3
and CSS styling. Unless the developer chooses an IDE like Visual Studio,
Electron applications must be compiled and run to view the project's GUI.

P3: Developer Environment Tools

29

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Delphi

WPF

Electron

Delphi

WPF

Electron

Delphi
WPF

Electron

Delphi

Delphi's IDE, RAD Studio, offers a plethora of developer tools including Code
Insight (suggestions, completion, etc.), advanced debugger, code formatting,
refactoring assistance, keystroke macros, and integration with common
software version control systems. RAD Studio provides an Android emulator
feature and can tie into an iOS simulator on a macOS machine. RAD Studio is
the only IDE available for Delphi and the only method of compiling Delphi
projects, however, both the code and Ul definitions can be edited using
standard text editors.

WPF's IDE, Visual Studio, offers many tools including CodeLens (suggestions,
completion, etc.), IntelliSense (API suggestions), advanced debugger,
integration with version control systems and cloud services, and team
collaboration tools. Visual Studio is the only full-fledged IDE for developing
WPF applications and includes Blend, a separate system for WPF Ul design.
WPF could be developed using text editors and command line tools but would
be impractical for large projects.

Electron applications can be written in code editors such as Visual Studio,
Atom, and WebStorm as well as full IDEs. All offer robust features and tools to
enhance developer productivity. Electron must be compiled, run, and

packaged using the command line - integration with Visual Studio Code hasn't
been completed. Third party solutions may be available.

P4: Speed Implementation Time

Three expert Delphi developers completed their Calculator speedruns in an
average of 1.34 hours.

One expert WPF developer completed the Calculator speedrun in 2.05 hours.
One expert Electron developer completed the Calculator speedrun 0.55 hours.

P5: Code Size

The average Delphi Calculator required 398 lines of typed code.
The WPF Calculator required 680 lines of typed code.
The Electron calculator required 293 lines of typed code.

P6: App Store Deployment
Delphi's VCL framework can deploy directly to the Microsoft Store. Delphi's
FMX framework can deploy applications directly to the Microsoft Store, Apple
App Store, and Google Play app store for Android. In some cases this

deployment results in a platform package such as an APK or IPA which must
be uploaded.

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking
O

WPF applications cannot be directly deployed to any app store. Conversion to
the Universal Windows Platform (UWP) enables WPF .NET Framework apps
to deploy to the Microsoft Store and conversion to Xamarin provides access to
mobile app stores.

WPF

Electron applications can be packaged for the Microsoft Store but will not be
deployed there directly by default. Third party options are available. Electron
Electron apps can also be packaged for the Apple App Store but the process lacks 2
automation help.

Delphi is a proprietary software with three paid license tiers and a free
Community Edition and Academic Program. The free tier allows for
development as long as annual revenue does not exceed $5,000 USD per
Delphi year. The first license for full commercial use costs $1,599 USD and the tier 3
that fully unlocks the software suite is priced at $5,999 USD at the time of this
writing. An annual subscription is offered at one-third the initial license cost in
order to receive updates and new software versions.

WPF with .NET Framework is a proprietary environment and generally
requires a Visual Studio license for ease-of-use. WPF can also be used with
the open source .NET Core. Microsoft's Visual Studio IDE offers licenses with
WPF subscription fees between $45/month and $250/month at the time of this 3
writing. First-year subscription fees range from $1,199 to $5,999 with
additional years available at a lower cost. Additionally, a community edition of
Visual Studio is available for free to small teams.

Electron is a free and open-source (MIT license) framework allowing full
commercial use without any licenses or fees. It is not tied to an IDE but can be
developed in Visual Studio to take advantage of the IDE’s tools and 3rd party
ecosystem.

F2: Long-term Feasibility

Delphi has been growing, maturing, and expanding since 1995. It's
development maintains backward compatibility to the degree that a 1995
Delphi application can be ported to the current Delphi version with minimal changes. |5
Comprehensive documentation aids maintenance and a full support team is
available for upgrade, migration, or troubleshooting help.

Electron

Released in 2006, WPF has developed along with the .NET framework. It was
WPF open-sourced by Microsoft in 2018 and has provided several roadmaps 4
indicating community engagement and growth in the near future. Significant

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Electron

Delphi

WPF

Electron

Delphi

WPF

Electron

Delphi

WPF

.NET changes and Microsoft's shifting design decisions impact the long-term
feasibility of WPF.

Released in 2013, Electron is actively developed and maintained by GitHub
and has rapidly provided support for emerging technologies like Apple Silicon
(circa Nov 2020). It lacks the history and stable longevity needed to determine
if Electron apps built in 2020 will survive through 2030.

F3: Development Platforms

Delphi can only be used on Windows machines. Virtualization solutions such
as VMware, Parallels, and Virtual Box with a virtual Windows machine allow
Delphi use on other platforms.

WPF applications using.NET Framework can be written in Visual Studio on
any platform but must be compiled on a Windows machine.

Electron can be developed on Windows, macOS, and Linux.

F4: Testing Support

Delphi ships with the DUnitX unit testing package but lacks a native integration
testing system. Numerous 3rd party unit and integration testing tools are
available but may not be free.

WPF's IDE, Microsoft Visual Studio, includes a unit testing framework.
Open-source projects or testing libraries like XUnit.net and Moq are also
available.

Electron does not install with a native unit or integration testing package.
Open-source projects and libraries are available for both functions.

F5: Tool Extension

The RAD Studio IDE for Delphi is written in Delphi. Users can build their own
extensions and tools in Delphi, eliminating the need to learn a new language

and handle language boundary problems. Additionally, extensions and tools
can be built in C++ via the C++Builder side of RAD Studio.

Visual Studio, the native WPF IDE, can be extended in a number of ways and
in multiple languages. Macros are written in Visual Basic, Add-Ins are written
in .NET, and Packages can be written in .NET, C#, C++, or Visual Basic.
Because WPF is written in XAML and ties into a C# logical back-end,
businesses might not have in-house experience to build tools they need to
enhance their development environments without out-sourcing the work or
investing in training.

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
http://xunit.net/
http://xunit.net/

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Electron

Delphi

Electron

Delphi

Electron

Delphi

WPF

Electron

33

Electron lacks a native IDE but can use plug-ins available in IDEs such as
Visual Studio Code. Additional Electron tools might have to be developed
in-house from scratch or integrated with a 3rd party tool such as Visual Studio
Code. There are a large number of open source projects around tooling and
functionality for Electron.

F6: Accessibility

Delphi VCL applications are fully accessibility-compatible. Delphi FMX
applications are not accessible-friendly in the latest release but work is being
done to re-issue a free accessibility package for Windows applications. Both
VCL and FMX based applications can be compiled to Win32 and Win64.

WPF .NET Framework applications can compile to Win32 or Win64 and have
full accessibility compatibility on Windows machines. When compiled as a
browser app, accessibility depends on browser implementation.

Chromium supports many accessibility tools such as screen readers and
magnifiers and is functional on all desktop platforms. Electron provides
support for both Win32 and Win64.

F7: IP Security

Delphi compiles to native machine code, eliminating much of the source code
structure and metadata necessary for accurate decompilation and
interpretation. Decompilation using a tool like DeDe will provide full details
about the Ul but only assembly code for the logic/back-end.

WPF compiled to a Windows desktop application is converted to .dll and .baml
files. Decompilation back to recognizable C# and near-perfect XAML is
possible through 3rd party tools.

Electron source code is packaged and deployed to the end-user's system.
Unless a developer uses 3rd party tools to obfuscate code, the source code
can be read verbatim using a simple text editor or by unpacking with a tool like
asar.

X1: Target Platforms

Delphi can compile to native 32-bit or 64-bit code for Windows using the VCL
framework and compile to 32-bit or 64-bit code for Windows, macOS, Android,
iOS, and Linux using the FMX framework.

WPF can compile to native code for Windows and to a browser executable for
cross-platform use.

Electron packages for cross-platform use within the Chromium browser rather
than compiling to native code.

X2: Project Variety

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

Delphi

WPF

Electron

Delphi

WPF

Electron

Delphi

WPF

Electron

Delphi

Delphi can be used to create applications on all levels from Windows services
to Programmable Systems-on-Chip (PSOC) to enterprise applications with
database, Ul, and network components. 3rd party tools extend Delphi
applications to the web.

WPF with the .NET Framework focuses on developing "visually stunning
desktop applications". It has access to all Windows .NET functionality,
including database access and multimedia tools.

Electron applications mimic desktop applications by running in the Chromium
browser and are typically web-centric (i.e. collaboration, messaging, etc.).
Electron uses node.js for native services, utilities, and back-end applications.

X3: Scalability

Delphi applications can be separated according to a chosen design pattern.
Delphi supports client, middle-tier, and back-end applications and each tier
can be divided and owned by different teams.

WPF applications can be developed and tested modularly according to design
patterns or with the aid of the open source Prism library. WPF is primarily a
client-focused framework but can incorporate C# logic for middle-tier and
back-end.

Electron can be developed and tested modularly for projects of any size.
Electron uses node.js for middle-tier and back-end functions.

X4: Database Access

Delphi ships with multiple database libraries that connect to nearly every
database type on the market. Database access, queries, and data display are
smoothly integrated through components accessible in the free Community
Edition and at the first commercial license tier.

WPF ships with access to database libraries, including ADO .NET Entity

Framework, that enable database connections, queries, and entries through
C# code.

Electron does not include a native database access library. Multiple open
source libraries are available to harness server and server-less databases,
including JavaScript implementations.

X5: Hardware Access

Delphi's FMX framework includes libraries that allow interaction with a device's
peripheral sensors and components regardless of platform. These libraries
compile into native code. The Delphi RTL, direct memory access, and other

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://prismlibrary.com/docs/index.html
https://prismlibrary.com/docs/index.html

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

WPF

Electron

Delphi

WPF

Electron

Delphi
WPF

Electron

Delphi

WPF

low level features give it full access to the hardware platform, including inline
assembly code on x86 desktop platforms.

WPF .NET Framework can access numerous Windows libraries for sensors,
1/0 devices, and other peripherals for PCs. WPF’s access to hardware is
through managed code rather than native code, but there is a native
(unmanaged) interface through P/Invoke. This bridge limits some access.

Electron can access operating system functions and hardware peripherals
through node.js libraries. It's cross-platform Chromium base facilitates high
level hardware access on all major desktop platforms. Electron’s access to
hardware is through managed code rather than native code and can only
access features exposed through libraries.

X6: Platform Access

Delphi VCL and FMX are fully capable of accessing and using native OS APIs
and features on all major desktop and mobile platforms. Delphi applications
can push native OS messages and notifications and access such platform
functions as storage, contacts, battery status, etc.

WPF applications have full access to Windows APIs and can use/initiate
Windows OS functions with the .NET Framework. These interactions occur
through managed code, not native code.

Electron applications are unable to utilize operating system functions without
bridging libraries developed with other tools and frameworks.

R1: Deployment Requirements

Delphi compiled to one executable binary file averaging 2-8 MB in size.
WPF compiled to 2 files that were just 55 KB in size.

Electron compiled to 151 files that measured 198 MB in size.

R2: Startup Time

The Delphi calculators averaged a startup time of 0.239 seconds from local
files and 0.439 seconds from network files with a standard deviation of 0.07
and 0.329 seconds respectively. The slowest startup times were 0.687
seconds locally and 2.416 seconds networked.

The WPF calculator averaged a startup time of 0.471 seconds from local files
and 0.643 seconds from network files with a standard deviation of 0.075 and
0.178 seconds respectively. The slowest startup times were 0.814 seconds
locally and 2.106 seconds networked. WPF was slightly slower than Delphi
overall but it's slowest network startup time bested the other two frameworks
and network startup time was the most consistent.

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

The Electron calculator averaged a startup time of 0.483 seconds from local
files and 0.848 seconds from network files with a standard deviation of 0.054
Electron and 1.902 seconds respectively. The slowest startup times were 0.846 1
seconds locally and 19.669 seconds networked. Electron had the most
consistent local startup time but was the slowest overall.

R3: Standing Memory Usage

The Delphi calculators averaged 21.1 MB standing memory use but this
number isn't a clear representation of the framework. Calculators written in the
Windows-only Visual Component Library (VCL) used 3.6 MB of memory when

Delph idle, far less than the competition. Calculators written in FireMonkey (FMX), S
the cross-platform library for Android, iOS, macOS, Windows, and Linux, used
32MB of memory when idle.

WPF The WPF calculator used 37.3 MB of memory when idle. 1
The Electron calculator consumed 20.4 MB of memory when idle, beating

Electron 3

Delphi FMX and WPF but still six times more than Delphi VCL.

R4: Peak Memory Usage

The Delphi VCL calculators used 13 MB of memory at their peak. Delphi FMX

Delphi 5
calculators peaked at 44 MB.

WPF The WPF calculator peaked at 50.4 MB. 3

Electron The Electron calculator peaked at 57.8 MB. 1

36

o Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

O
o

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

I
S

Appendix 3. Framework Decompilation Analysis

Overview

The goal of this decompilation exercise was to determine the feasibility of retrieving both the Ul and the
original code from each framework’s calculator application using open-source or free tools. The
frameworks assessed were Delphi VCL, Delphi FMX, WPF (C#), and Electron (with Angular).

When the Delphi VCL and FMX calculators were decompiled, all Ul elements were successfully extracted
and the logic code was presented as assembly. This exercise wasn’t able to extract function and
procedure structure but it may be possible.

Decompiling the WPF calculator yielded the Ul elements and mostly recognizable C# code.

The Ul elements and Javascript code of the Electron calculator are easily exposed using a standard text
editor. The Typescript code was transpiled into Javascript and could not be recovered. Overall, Electron’s
packaging provided a very limited level of obfuscation.

Tools
Delphi

DeDe - one of the most popular Delphi decompilers.

Interactive Delphi Reconstructor - a decompiler for Delphi executables and dynamic libraries.

MiTeC DEM Editor - a standalone editor for Delphi Form files (*.dfm) in both binary and text
format.

WPF

WPEF StylesExplorer - a WPF .baml decompiler and tool to explore .baml resources.

Snoop WPF - a tool to spy/browse the visual tree of a running WPF application without the need
for a debugger.

JetBrains dotPeek - a .NET decompiler and assembly browser.

Electron

TextPad - a general purpose text editor for plaintext files.

37

O Embarcadero Technologies, Inc. | Source Data Repository

https://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml
https://github.com/crypto2011/IDR
https://www.mitec.cz/dfm.html
http://stylesexplorer/
https://archive.codeplex.com/?p=snoopwpf
https://www.jetbrains.com/decompiler/
https://www.textpad.com/home
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

Decompiler Results

38

Delphi VCL

B8 DeDe 35002 (c) 1999-2002 by DaFixer - a X
File Dumpers Tools Options About
IC \dede\Calculator_Barker.exe _v‘]?':‘_l Process | velealculator
I Clazzes Info | Units Info | Forms | Procedures | Froject | Exports |
Class Name | Urit Name | SelPrt | DFM Offset | w Version:<unknown version>
& TList1 Pack[D}$08Intf Syst 00519590 00000000 Uit List (from PACKAGEINFQO)
<9 s b Spstem -~
F TList1 Pack[0J$08Intf<Syst. .. 004B134C 00000000 Spstem.Actions
J TList1 Pack[0]$03Inti<Syst... 00444528 00000000 gvS:Em EES‘SNTSS
S vstem. Character
' TList1.Pack[I$08Int<Syst.. O043FES0 00000000 ST
& TList1.Pack[0]30%Intf<Syst... 0044085C 00000000 System. Contrrs
d TListl Pack[D1$08Intf< Syst... O04B3E14 00000000 System. Datelltils
& TList1 Pack[0]$08Intf Syst 00448378 00000000 System.Diagnostics
e System. Generics. Collections
& TList1. Pack[0}0Intf<Syst. .. 00447CEC 000DODOD e e Derala
& TList1. Pack[0}0intf<Syst.. 0D44E7EC 0O0DOOOD
S Spstem Helplntfs
J TList1 Pack[D]$08Intf<Syst... O044704C 00000000 !
i Spstem.ImageList
d TList1 Pack[D1$08Intf< Syst... 0044E134 00000000 System.IniFies
& TList1.Pack[0]0Intf< Spst... 00447644 00000000 System.lntemal.ExcUtils
d TList1. Packi0}0Intf<Syst.. 0044EE2C 00000000 gyztzmﬁi‘lﬂz
& TList1.Pack[D}$08intSyst... O044DAD4 00000000 Sustem Math
d TList? Pack[OJ408Intf< Syt 00s0E334 00000000 System.Meszaging
& TList1 Pack[D]$08Intf<Syst... 00480654 00000000 gﬁztgm-m}&nsts
& TList'1 Pack[}§08Int<Syst.. 00507488 00000000 Syetam Stlitls
& TList1 Pack[DJ30$Intf< Syst... 0D4F97CC DOODOOOD System, SyrcObjs
I T Ao e AnamAnnn AAconnon hall - oo ¥
Ready 0 sec. |Calculator_Barker.exe 2497024 bytes v
Table 1 - DeDe Decompilation of Delphi VCL
DFM Editor SANEI X
>3 [3] Preview Form ohxXxm SEDE
G R M @ O
[Save Form Image #& Frdand Replace Undod Al
Rt e Form Regster... Seffngs... About... Exit
E (&) Rescan Objects Dodk Al Cleaner
e i, i View i HEdE i1 Windaws iz 1 Touks 1. .11 Application 12,
[E] TVCLCALCULATORFORM “rv
and ial purposes
Structure (39) &® VOLG TVCLG » i d cl (a34)
Type text to search L[*E object veicalculatorform: TVCLCalculatorform | ['Properties (67/ 196) | Events (44) | Inhertance | | |Data DB TAutalncField T
2 Left =8 e i Data,DB. TECDField
A n thzﬂ?end S— j'g;m = | |pata 0B TBinaryField
15 1) TopPanel (2) 5 A1$has1gnm1ug - 25 ActiveContral ;?:a gg i
5 [Panel1 (1) O Caption = "VCLCalculatorForm' Align alione ;‘:‘DB‘TS sl
] itorylabel 7 Clientheight = 478 AignWithMargins False e el
& [Panel2 () C | Alpbaniend 1= Data,DB TDataset
Currentvaluel abel s Font.Charset = DEFAULT CHARSET PR i Data.DB. TDat=Source
&[] Functonspanel (5) Fent.Color = kluindowText oy e Data.DB. TDateFicld
= s s e e 08 stz Tmeied
Tk e
Mem3 KeyPreview = True Borderlcons [biSystemMenu,biMinimize,bi. .., Data.DB.TGraphicField
Memd OldCreateorder = False BaFdiistyle e Data. DB TintegerField
Mems OnCreate - FormCreate Becder it 2 Data. DB TMemoField
Mems OnDeactivate = FormDeactivate ?Pﬁﬂﬂr :‘7’;" Dato,DB, TNumericField
& [Buttonspanel (24) OnResize = Formkesize Data.0B.TParams
B PixelsperInch = 95 Chentialh Cad Data. DB TSmalintField
i Textheight = 13 e chneace Deta.DB.TStringField
i 0”3:;: j‘?:"ﬂﬂﬂv TPanel | Constrants . .ﬁ:ﬁc.".”ﬂfﬂ.‘."‘ﬁ).. oot DB Trmerid
Pri4 Cursar aDefault 2:::22:_(@ &t
L Height - 104 sttt R Datasnap.DEClent. TClientDataset
Pri§ Align = alTop i M Datasnap.DEClient TCustomClientDia
Pri7 TabOrder = & i S Datasnap.Provider. TBasePravider
9 i object Panell: TRanel R e Provider TCustomProvider
Prit2 Lefe B et der TDatase tProvides
7 prits Top 5 . TextContainer, TT
s - | - — Y e
i > Align = alToj ftioree] MTec Control.Calendar. TCalendarE:
Pri10 35 Bevelouter = buione {chaesiame) MiTeC. Control, Calendar. TCustomDrz
At = Calar, - 11842221 & MTeC.Control.Calendar. TDraw GridE:
Pri13 o Eaneta kemound =itelse MITeC Control Calendar. TWieekview
e 33 obiect Historviabel: TLabel v hicontext (G ol ey
Pnils < >
"”:‘7 Ln: 11 Col: 16 Chr: 99(s3) Cnt: 650 Sel: 0 Insert | ANSI HorzsrolBar (TControlsarollsar)
Prizs i (ieon)
s o [Msouee [roview con men |

Table 2 - DFM Editor GUI Code View of Delphi VCL

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

DFM Editor o x
D& & B © [JPrevewFom ohtmd B8 ME Q TH @ |
Save Form Image Find and Replace:
 Recent fes i f Undeck Al Form Regster... Settings... About... Bt
~ (@) Rescan Objects E Go to Source Dock Al Cleaner
: File View Edit Windows :: .:: Tools
@ TVCLCALCULATORFORM ‘ i
Structure (39) & % VLG TVCLE: % Regi d
Type text to search o] Properties (67] 146) | Events (44) | Inheritance | Data.DB.TAutaIncField ~
Object name [E] veLCaleulatorForm REmy e Data.DB.TBCOField
5§ VO CalaulatorForm (4) - Action & EEZ gg g:nsrfl:h
=[] Toppanel (2) ActiveControl D:E‘DE‘ ;i
&0 panei () o e, Data.DB. TBytesFicld
0 storpiabel AT ;Er‘:i Data. DB TCurrencyField
=} Panel2
e b0 oo
Anchors [akLeft,skTop] Btk on
a Eﬂmmé’anel ® AutoSaoll False e
Meml AuteSize False s
Date. DB TField
1 memz2 BDiMode bale ftToRight 5 G
Data,DB. TFloatField
3 Mems Borderlcans S ystemMenu bivinimize b g
Data.DB. TGraphicField
0 Memd BorgerStyle bsSizeable e e
Border Width 0
1) Mems c‘;’;m‘ i Data. DB, TMemoFicld
[Mems. =5 = o Data.DB. TNumericField
- [ButtonsPanel (24) ClientWidth 501 Data.DB. TParams
o Pt i e Data.DB. TSmalintFieid
o ez Data. DB, TStringFisld
Constraints (TsizeC) Ry
o Pz [SE>) True rRi
0 pria Cursor aDefault [e
0 Pais Qoiing Datasnap.DBClient. TClentDataset.
1 pris CustomTitieBar (TTitleBar) -
ﬂ e DetatManioar Fare Datasnap.DBEClient. TCustomClientDa
s o Datasnap.Provider TBaseProvider
£ Pz = G Datasnap.Provider, TCustomPravider
0 priz Dragiand doras Datasnap.Provider. TDataSetProvide!
O prits En ey MTeC. Component TextContainer. TT
0 ez skt ;‘F:.:: MTeC Component.UipdateCheck. TUp
MTeC.Control. ButtonGr TButtors
1 pris FormStyle Foormal S mnan i
e (TalassFrame) MTeC. Control. Calendar. TCalendarE:
0 prito MTeC Control. Calendar. TCustomDre
HelpContext 0
0 i e WITeC Control.Calendar. TDrawGride
O i1z T MiTeC.Control, Calendar. TWeekView
1 priza e trol T
n Coim :E :T‘{De htContext e ol TEa
in
MTeC Control. Categ Buttons. T
0 Pz Mem2: TLabel ¥: 60 Y: 112 Insert | ANSI HorzScrolar [S R Y
0 pris Teon (con) bk i i
1 priz2 4 Ke = True v | |MTeC.Control. CategoryButtons. TBU v
»y Crypto: C:\dede\ Calculator | o x
File Tools Tabs Plugins Progeem
Ui F21 | Types) Foms 5] Codsiow:) | ClasiViower 7] Stings (76| ames (73] ScuceCode (F10)
00401000 #002 TF System /| Ep <] o e umito3 TApplcation Run XPels
$05109K0, 4001 Sysioih C call TCustomForm. Show aJoo5raBsc D
Q0411050 8003 T iAystem. > Jmp. 00605584 0061866D C
00414588 #004 I _Unitd 50060557 i It
002 E699aAR005 i 06055 call TForm. SetVisible
0041666C #006 I _Unit6 SiGooEEa4 o i
0041C998 #007 TF _Unit7 oy SH
0041ccO8 #011 T System.S$| push 60554
00423200 #010 I _Unitl0 e e e e]
004287204908 _Unith 8 mov dword ptr fs: [eax],esp
0042DB90 #009 unity 0 mov. eax,dword ptr [ebp-4]
00430734 #012 IF _Unitl2 call TApplication.HandleMessage
00433674 #013 T _Unitl3 e P
00433EA4 #014 IF System.V| pop ed.x'
0043p7C4 #015 I Unitls 5 pop iy
0043DEF0 #016 I _Unitle 2 b be el
0043DEF8 #019 I System.C i P e
0044E70C #017 T System.C o i T
00466748 #018 T System.G i i i laAnyREptLin
20470800, #0290 T Systemig] 55 mov edx,dword ptr [ebp-4]
00481EAB #021 I System.C 5 e e ol e
004838A0 #022 ¥ _Unit22 ptf” Thppication. fandleException
00483BE0 #024 T System.G Gt iy eyt
0048834 #023 System.R >00605589 mov eax,dword ptr [ebp-4]
004BD570 #025 IF System.G ; posi byte ptr [Gax+0BC],0
004DEC24 #026 F System.G Sy jo bugoesat
00500800 #027 System. Tigllis 60505505 xor sax, eax
0050328C #028 System.M e o
0050ADE8 #029 I System.G C pop v
005182F4 #030 IF System.G 5 Fob i
00519264 #031 IF Unit31 5 v dword ptr fs: [eax],edx
< > [l D bush 6055E4 ¥
|
Find import Prototypes
= s32pM
O Type here tosearch 5 @ = B @ Ooe 28 2 0 Apag 20 O

Table 4 - Delphi VCL Assembly Code Generated by IDR

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

J Whitepaper | Discovering the Best Developer Framework Through Benchmarking

O

40

Delphi FMX

. DeDe 3.50.02 (c) 1999-2002 by DaFixer — O x
File Dumpers Tools Options About
X ~ Calculator
IC.\dade\Ca\cu\ator_Pramart\n.exe ;iE'_l Process
Classes Info | Uitz Infa | Farms | Procedures | Praject | Ewxparts ‘
Class Mame Unit Mame e Version:<unknown version>
48 0t haled b Unit List [from PACKAGEINFO)
3 TFM=0bjectHelper FindMearestParentO fClass$08 ntf<Fhdi List... f "
3 TList"1.Pack[0$03Intf< Fidx Acceleratorkey. |AcceleratoiepRe. fCalchain
& TList'1.Pack[O}S08Int<FMi. Acceleratarkey Win Twindcoeleral... FMX. Acceleratorkey
L : B % Fhdis Accelerator ey \Win
J Tlist1 Pack|N0Inti<FM &ni Tanimation T TrigoerRec EM ActrLict
& TList™1. Pack[O1$0$I ntf< FM2{ Ani. TAnimation: Fhix.Ani
3 TList1. Pack]D[$0%Inti<FMx. Behaviomd anager. |Listeners Em Ee‘ha\;mManager
il TLIUT Pack|O[808IntECE Carvas, D20, T TeulLayoulDZD.T0. Fhisd Catendar Sigle
(9 .TLigt™1.Pack[0303Intf<F . Context. D3, T CustomDi=9Context: Fi¥ Canvas D20
3 .TList"1.Pack[0}#0%Intf< Fidx. Contrals. HintReceiver> FM Canvas GDIP
3 .TList"1.Pack[0]$03Intf<Fidx Contrals. Prasentation, T Presentatio.,. Fm§ E::::z E‘gH e
J TList1 Pack|Q0Inti<Fix Contrals. TContrals
J TList1 Pack[0}0$Inti<FM,. Controls. TS tyleCallectionltems Fhdi<. Clipboard win
& TList) Pack[0S0$Int<PM DiateTimeChls Types TOTFomstPa mi Eg:féit e
ﬂ .TList™1.Pack[0$0% ntf<FMx. Dislags.\Win. TFM=DislogS ervice. T... Fh, Cantest. D9
éf TLigt™.Pack[0[$0%Intf<Fi:.E ffects. TE flect» Fhdi<. Controls
& TList"T. Pack{O}S0$Int<F M. Fiter. T FilterClass> A el
3 TList1.PacklDIS08Inti<Fh< Filer TFierhd TContexRiecs A
Sl e v e el e [ot Prseraton
< > | v
Ready 0 sec. \Calcu\atorﬁl’remamn. |9454592 bytes | A
Table 5 - DeDe Decompilation of Delphi FMX
by crypto: CAdede\Calcultor P - 5 x
e Tools Tabs

Uries 2] | Types F4)| Fome F5) Codiower) | ClasVewer (7) Sings (6] Nemes IF9) SausceCods (10)
00401000 #002 TF System || [gp| ||/ 50 Uni123 Thpplication Run XAcls
00411034 #001 SysTnit ~[0095D8DC D

_Unitl23.TApplication.Run
push

ebp

C ebp,es
004197EC Units o o
00419BF0 Unité o P
00420394 #007 TF _Unit7 S s
00427680 HOL0 1 Uniii0 pusk e

ol Lt push dword ptr fs: [eax]
0042FB64 #008 Units o Sy
00432160 #009 Unit9 S
00435238 #012 TF _Unit12 g

0043836C #013 T _Unit13 fea Sa%.
00438D48 #014 IF System.V St

00423AD4 $015 <4t @IntfClear
0044200 #ol7 T Systemn push .
00442528 #016 System. Selt ggz1014
ystem. R mov edx, 971888
0044F€BA #018 IF System.G Eos bt

0046F988 #019 F System.G e

,esp

call Supportsplatformservice
00492634 #020 system.T b i
00494FF0 #021 I _Unit2l > je 971896
00495104 #024 I System.C geszis on, e rdibts Tabb oAl
0046580 #022 T System.C g S deord ote feati
004BES84 #023 T System.G pity dword ptr [edx+0C]
004DBDF8 #025 I sSystem.G ||lS00571806 i e
004DCD88 #026 I System.C i s
004DE920 #027 IF Unit27 el S
004DEC60 #028 IF System.G = pr
0050DE54 #029 TF System.G s GeBraiptr Eadfena]tady
00510440 #030 T _Unit30 n 971883
00511250 #031 System.M. ||lsir5asiams e S D e]
< > call @IntfClear

009C36D3

00417024 <Pointer> PSingle
00417D38 <Pointer> PUINT
00417D4C <Pointer> PSINGLE
00417D6C <Record> _SINGLE_LIST ENTRY

00417DAB <Pointer> PRTLCriticalSection
00417DC8 <Pointer> PRTLCriticalSectionDebug
00417DEC <Record> RTIL CRITICAL SECTION DEBUG
00417ECC <Record> _RTI_CRTTICAL SECTTON
00417F84 <Integer> HWND -

00417F9C <Integer> HHOOK

00417¥FB4 <Integer> HACCEL

00417FCC <Integer> HBITMAP

00417FE4 <Integer> HDC

NHMETAFTLE

o

P Type here to search

Table 6 - Delphi FMX Assembly Code Generated by IDR

" e=Bem0e ofesC

Find Import Prototypes

AW

528PM
127772020

(5]

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

DFM Editor o x

o e a1 R tH @ O

Save Form Image Find and Replace
Recent files E = n E Lroes Form Register. .. Settings.... About... Exit
& !
(2) Rescan Objects Go to Source: Dock Al Cleaner
View s Edit: &2 Windows 5 Tooks 2. &2 Appiication ::
O “<rv
= = = z

Data,DB, TAutoIncField "

ovider TBaseProvider

Structure (74) % frmCalcMain: TfrmCalcMain > Registered dasses (434)
Type text to search — Properties (57 / 146) | Events (44) | Inheritance |
Object name [E] Calculatar =N e « Value [Rin CH e ek
S g5 frnCakMain 7 e | |pata DB TBinaryFieid
é StyieBook (1) Data.DB. TElobField
D = Datz DB,
27 styles) Align alhlone
Date DB, TBytesField
+< 2 [0] -item -ﬁﬁ;":é}::,’f’m . :E: Data.DB. TCurrencyField
<0 1] -item = Data.DB.TDataSet
E-3 lbadground (2) Date. DB TDataSource
2 ch il cft kT
&1 Display (3) Bl [Z‘s: k) Data.DB, TDateField
] Data DB TDateTmeFiek
biCelas S
Ao Data DB TField
ik Lol 2 Data. DB, TFloatField
BEH-ig rOpacty (2) Borderlcons [biSystemMenu biMinimize,bi... DEE‘DB‘TG\ apticreld
$-{g ropacityoft BorderStyle bsSizeable S
It e 5 Data DB, Tintegerficid
& ropadityon - Data. DB TMemoField
B¢ gpButtons (27) ‘Craptmnr callculator Data.DB,
E-(]) ColumnCollection (4) =5 Data.DB. TParams
S [0 -item Data DB, TSmalintField
L¢ [1-ttem - Data. DB, TStringFicld
g @-em Data. DB TTimeField
Li Data. DB TV
= Date DB.TWordField
i [B) Datasnap. DEClent. TClientDataset
o Datasnap. DEClent: TCustom Clienta
S [-item g:z:}‘;""”‘“” [—
pod [-item = Datasnap.Provider. TCustomProvider
Lo [-tem i 2 i Datasnap.Provider TDataSetProvide
L frmCalcMain: TForm X: 503 ¥: 211 Insert | ANSI i i MTeC, Component. TextContainer TT
L ™ Soree | previw | me ot MTeC Component. UpdateCheck. TUr
i v * | |MiTec. Control ButtonGroup. TEutton
Messages () % ||MTeC.Conirol,Calendar. TCalendarEs
First abject is not recognized as TCUstamForm descendant, Preview resuits may be unpredictable, il C"”"": CE:E"T'-TC“““'"T
) Error reading frmCalcMain StyleBook: Froperty StyleBook does not exist mTE‘E"”:°“E=‘E";’-m’”§” E
(%) Error reating frmCalcMain.FormFactor,Width: Property FormFactor.Width does not exist R
) Error reating frmCalcMiain FormFactor.Height: Property FormFactor. Height does not exist R Leimj el e
) Error reading frmCalcMain FormFactor. Devices: Property FormFactor.Devices does not exist [
4 E;"” resdng "TCE"’; d" Property O MiTeC.Control,CategoryButtons.TBu
) Class TStyleBook not
) Class TStyleBook not foun ’

MiTeC. Control, CategoryButtons TBu

Table 7 - DFM Editor GUI Design View of Delphi FMX

Flace T Binnl et v

DFM Editor o X
g o SRS Shxm B80S Q TH @ |
Save Form Image Find and Replace
i =) f Undeck Al Form Regster... Seftings... About... Exit
0, (@) Rescan Objects Go to Source. Dock Al Cleaner
: File View Edit Windows : Tools
[Z] TFrRMCALCMAIN | “r v
= = = E
Structure (74) & % frmCalcMain: TfrmCalcMain > Registered classes (434)
Type text to search Pl 15 ﬂh:LiEg bkt el R e e Propertes (67 146) | Events (44) | Inheritance | Dats. DB TAutolncFiekd ~
e
Objectname : i S i Data,DB. TECDFeld
T oy e S cabeitorond e | |pata.e TBinaryFeld
= i3 = Data. DB TlobField
-y StyleBookL (1) ClientHeight = 631 ActiveControl R
577 styles @) Clientiidth = 534 Align allione Data.DB. TBytesFicld
<> [0 atem styleBook = StyleBookl AigniithViargrs False e
iy FormFactor.uidth = 320 AlphaBlend clse 3 s
i FormFactor.Height 5 peadRae et
5-[§ Ibadkground (2) FaribsctoriDévices b it Data,DB. TDataSource
&3 isplay (3) onCreate Ay i Data,D8 TDateField
0 bicalus OnKeyDown = FormKeyDown Sty = Data.DB. =
i - Data.DB.TF)
biResut Designerflestorstyiez 8 BDiMode bl eftToRight ! i
- object styleBookl: TstyleBook Data,DB. TFloatField
& ropacty (2) y Borderlcons [biSystemMeny biMinimize b, i
Styles = < Data, DB, TGraphicField
i3 rOpacityoff ttem Berdersiie, e Data, DB, TintegerField
+-{Lg ropacityon end e o Data. DB, TMemoFicld
& i @7 item Caption Calculator i
& gpButtons (27) 5 Data,DB. ThumenicField
57 ColumnCollection (4) ?““”‘ RGO 90 DeskOp® ir St :: Data.DB.TParams
: esourcesin = ientWi .
E 2 Data.DB, TsmalintField
ol em 464D585F5354534C4520322E350106134F 70657 261746F72427574745F Color BinFace D:E = TS';;;”HE;:
<0 [-item 796(6503200406124E7 560626572734 27574746 F6E5374796 (65035704 Constraints (TSizeConstraints) Rt ta
S0 [2] -tem 7175616427574746FEE5374796 (55031 EDADB5 450453007 544C61795F True 5 S
L [-item | 095374796(654E6 16D6506134F 70657261746F 724275747 46F6ES 37475 Cursor et beta o
517 controlCollection (29) 25 | 416(69676E070643656E7465720A53697A6 5265 7696474680500000006 CustomHint i e
2 i St R Datasnap.DeClent TChentDataset
o [0] -item 27 i S86C6174666F726D44656661756C74080756697369626(650808545167 DetatManioar Fare Datzsnzp.DEClient. TCustomClientDa
i e2izitm 2 | 65720206000A5452656374616E676(6500095374796(654E616065060¢ DockSite. False Datasnap.Provider TBaseProvider
Lo o [2)-item 2a | ARE77IRETRAFAAASATA KGR 76FA AR I KOKCAF 7AMIAAROR R IFARE ¥ = G Datasnap.Provider, TCustomPravider
S (3] -item u % s o Datasnap.Provider. TDataSetProvidel
L ey Ln: 1 Colt 1 Chr: L1I(SFN) Cnt: 678 Sel: 0 Insert | ANSI ponim ATy MTeC Component TextContainer TT
H MTeC Component.UipdateCheck. TUp
<[5 -tem s Previen | Font D
s o] (o e o (o] ¥ | |MTe€. Control ButtonGroup. TButtons
Messages (8) % | MITeC.Control, Calendar. TCalendares
i, First objectis not recogrized as TCustomForm descendant. Preview results may be unpredictable. | MTeC C"”"": Cale"j”-mus‘“'”i'f
Error reading frmCalcMain StyieBook: Praperty StyleBook does not exist e e
) Error reaing frmCalcMain FormPactar. Width: Property FormFactor, Width does not exist g
) Error reating frmCalcMain FormFactor.Height: Property FormFactor. Height does not exist MTeC Control, Categar‘/‘sulmr\s TBa
) Error reading frmCalcMain FormFactor.Devices: Property FormFactor.Devices does not exist [z Egm; e
) Error reading frmCala: Property Dx does not exist || MTec Control CategoryEuttons Teu

MITeC. Control. CategoryButtons. TBu y

Table 7 - DFM Editor GUI Code View of Delphi FMX

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

WPF

& Jetrans dotPeek - =} X
Fie View Navigste Inpec Tooks Windows Help

0|8 @y

Assembly Explorer

Palade s o RN =
ry
oe to searc i ¢ T
4 5 CWPE Compiled File ~ if (operation |- "sar” 8 operation 1= V" 8& (operation != "1/x" & operation I= "¥"))
TRy ———— this.UsedOperatorTnSequence. Add(operation):
g string strl - this.UsedOperatorTnSequence..LastOrDefaultstrings (Funcstring, bools) (s => s I= operation));
4% Mstadata His CURFARtOpE AELon = operatians
b B Headers if (string. TsNu is.FirstOp I| this.L, i gy
b B #Strings (267 {
ameusey this.Operation = | (operation == "-") ? (operation == "<" 2 this.Operation : operation) : strl;
this _Firstoperand = thiz.Dizplay;
e 00000000 thiz.Lastoperation = operation;
5 00000001 _CreateDelegate £f (this.Operation == "hqr® || this.Operation I (this.Operation == "1/x" || this.Operation == "%") || this.Lastoperation
©5 00000021 MeinWindow xaml &
% 00000041/ Calculatorcomponent/mainwindowscam! A NI
this.Display = this.result;
9 000000ED Calcuiator Properties Resources N
5 000000CD IsChanged this . TsB0OMASOperation = trus;
3 000o00E 10
3 00000ES Display I g
0 0000ES Eepeecsiin [if (ithis.1s80DMSOperation || operation || (operation == " “1/x") || operation
3 00000108 FirstOperand = {
e 00000125 C [<his.Secondoperand = this.Displa
0 o001z this.Operation = operation == "=" ? this.LastOperation : operation;
this_Calculateresult();
00000131 +/-
9 00000139 CE §F (this.Operation 1= "sqr” 8 this.Operation != X" 8 (this.Operation != V" 88 this.Operation 1= "1/x))
5 0000013 = 8 t
0 00000143+ this.Lastoperation - operation;
& this.Firstoperand = this,result;
S aie: this.I:000MASOperation = true;
0000148 %)
9 0000014 = [this.isplay = {(this.result == “Infinity”) ? this.result : “Overflow™;
oI tring strz = string.IsNullorEnpty (th 2 : th
S SErite o2 st TTIor gty (1AL) 2 this. p : this. ;
8 0000015F 1/x
9 00000167 % =
5 00000168 Infinity !
3 00000170 Overfiow -
9 0000078F (
0000195) 1/x%)
L 7 i i this.Lastoperation || this.Lastoperati = || (this.L i 4 "1/%7) || this.L
g ; (operation is.LastOperation || this.LastOperation - "sar” || (thiz P)
9 00000745 Cannnot divide by zero this Expression - string.Empty;
5 00000103 Enor whist calculating this FirstOperand « string.Emply;
. this SecondOperand = (string) null; v
4 Fynression a1 Tost LI s L e
= — 43090
O Typeheretosearch H @ = (3 Oe 2% 20 @ © & Amog 200 0
& Jetbrans dotPeek - =] ®
Fie View Navigate inspect Took Windows Help
[N

Assembly Explorer
PAlED 288 L0 o (“PresentationsuildT
LIl pwiic void mitializecomponent()
pe [
b % Base types A $F (this. contentioaded)
4 B ineriters
4 G Calculator MainWindow = = tryel 5 g ? e g s
pplication. LoadComponent{ (object) this, new Uri("/Calculator;component/mainwindow. xaml", UriKind.Relative));
> % Basetypes
B Connectint connectionid
InitislizeComponent(:void beousaeriiantisaccoms]
@ o [GeneratedCode ("PrezentationbuildTasks", "4.0.0.0")]
i [EditorBrowsable(Editorbrousables tate Never)]
& buttonButon 9| void 1 v tor. Connect(int connect ionld, object target)
& tutionzsuttor ¢
@ button3:utton switch (connectionld)
. t
& buttonatuton ensesdic
@ buttonsiButton this.displayGrid = (Grid) target;
butonsution break;
- case 2:
button7Button
4 . this. InputTextox = (Textox) target;
& tutionguttor bty
& tutionsiu case 3
buttonBackspaceButton this.DisplayTextBox = (TextBlock) target;
& butonCEButton e
z“"j‘ KieaueBition this.buttonsGrid - (6rid) targets
buttonDiideButon break;
& buttonDotBution case 50
B buitonmiuton this buttonpercents = (Sitton) targets
& buttonMultplyButton i e
& tuttonOnexButton this.buttonCE = (Button) target;
& butionPercentzgeButton break;
case 7.
buttonPluseButton
4 this.buttonClean = (Button) target;
& buttonPluseminusButton e
& butionResultBution case 8:
& butonsGricGrd this. buttonsackspace = (Button) target;
& buttonintwo:Button break;
case 9:
;‘»J‘ e this. buttonOnex = (Sutton) target;
isplayGrcGr bred
TectBox TextBlock case 10:
B loputTentonToEo this. buttonxintwo = (Button) target;
break;
& contentlo: case 11
b G8 MS nternsl AppModel RootBrowserWin hdesbittonssqure = iBitEon] Sargets
b €8 MS.nternal AppModel. RoctBrowserWindow
b €8 System Windows.Navigation.NavigationWindow G
O s [RPAT—

] £ poenertoseacn HenBeECCecR LGOI RT F AROS i D

|@

Table 10 - dotPeek Decompilation of WPF GUI

42

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

43

alculator - 5

e

~| Tracking options

= (001} (MaimWingon)
5 [002] (Border) 134
[003] (AdornerDecorater) 133

 {006] disployGrd (Grid) 18
5 [007] InputfextBox (Textgox)
5 [008] border (Border) 13
1009)
 [010] (Grid) 11
007) DisplayTextgox (TextBlock)
007] nitor)
007] (RowDefintion)
il

(006 (Gic) 106
1007 buttonPercentage (Button) 3
5 [007] butorCE (Butor) 3

1 007] buttonClean (uttor) 3
 [007] buttonBackspace (Button)
5 007] buttonOnex (Button) 3

5 007 uttonsintwo (Butor) 3
5007 buttonsqure (Buttor) 3

5 1007] buttonDivide (Button) 3

CEE)
|

5 [007] buttonMultiply (Button) 3
2 [007] buttond (Button) 3

2 [007] buttonS (Button) 3

5 [007] button (Button) 3

5 [007] buttonMinus (Bution) 3

B [007] buttonT (Button) 3

1 [007] button (Button) 3

B [007] button (Button) 3

5 [007] buttorluse (Button) 3

1 [007] buttorPluseminus (Button) 3

1007] (RowDefiniton)
1007] (RowDefiniton)
1007] (RowDefiniton)
1007] (RowDefiniton)
1007] (RowDefint
1007] (ColumnDefinition)
007] (ColumnDefinition)
1007] (ColumnDefinition)
1007] (ColumnDefinition)
006] (RowDefiniton)
006] (RowDefiniton)
006] (RowDefiniton)

88 O Type here to search

Electron

PART Contentriost (ScrollViews) 12

Table 11- Snoop WPF Decompilation of WPF GUI

ALWMB Lo U

L' TextPad - [Ci\calculator-win32-x64\resources\appimain-es5.js|

a x
i File Edit Search View Tools Macros Configure Window Help
NeHEH B SR (D 4R @] eue » | iFindincrementaly [1t fa
Decument Selec.. & % - 3
main-ess js T |
~
styles-es5js (this.operator
if (this.calc_result 0 && newNumber o) ¢
this.cale_result = 0
poelse
this.cale _result = parseFloat(this.calc_result.toString() + newNumber.toString()):
b
3 else ¢
this.old value = this.calc_result;
this.calc_result = newNumber:
¥
ali_click”,
function kali_click() {
this.operator = 'x';
3
P ¢
key: "tamban _click®,
value: function tambah click() {
this.operator = '+';
3
PP
key: "min click",
function min _click() {
this.operator = '-';
¥
ot
key: "samadengan click",
function semadengan_click() {
switch (this.operator) {
case ':':
this.cale _result = this.old value / this.calc_result;
break; B B
cass 'z':
this.calc_result = this.old value * this.calc result:
break;
case '+':
this.calc_result = this.old value + this.calc_result;
break;
case '-':
Ifpa i soosii o epae g smams o sse s ocnao 5
Qe[FD. | & < 2
For Help, press F1

1 1

Read | Ovr | Block Sync Rec Caps

Table 12- Textpad Displaying Electron Logic Code

o
Contot | Evens [Toggers | Behaviors | Wetods | Poweiet | et Letener|
9 Clear st e [l < |DI[B]
Name Value Value Source Sinding Errors ~
Acualbeight 3577 Local
ActualWidth 53 Local
AllowDrop Defout
AreAnyTouchesCaptured Defat
AreAnyTouchesCapturedWithin Defat
AreAnyTouchesDirectyOver Defuit
AreinyTouchesOver Defaut
AutomationProperties Acceleratork Defat
AutomationPropertes Accessey Defaut
AutomationProperties Automationl Defaut
AutomationProperties HelpText Defaut
AutomationProperties.isColumntiez (] Default
AutomationProperties sOffcreen: Default o x
Automationsroperties shequiredfo [
AutomationPropertis RowHeader (]
AutomationPropertis hemStatus
AutomationPropertes temType
AutomationProperties abeledly /
AutomatonProperties veSetting Off
AutomationProperties Name
AutomationProperties PositioninSet -1 4 ’
Automationdroperties SzsOfSet -1
Background 72 e
SindingGroup 4
BitmapEfiect 7 y
SitmapEiectinput 7 5
CacheMode 0
Chidren [SystemWindows Control Ui
- 7 “
di
ClipToBounds] .
7 /
0 ~|on
4470M

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

Whitepaper | Discovering the Best Developer Framework Through Benchmarking

44

L TextPad - [C\calculator-win32-x64\resources\appimeain-es2015 js.map *] - o x

File Edit Search

NEHESR

Document Selec... 4 %

View Tools Macros Configure Window Help

5=

| & (@Y 4R Fatl e ue » | Findincrementally 1 fa

‘main-es5js.map- main-es2015js.map * X |

Ll

runtime-es5.js | index.html | styles-esSjs | main-es5js |

index.ntmi
main-es2015 js.map *
main-es5 js

main-ess Js.map
runtime-ess.js
styles-ess.js

Qe [FD. | L.

x

<

routes, \n {onSameUrlNavigation: 'reload’}\n)1,\n exports: [RouterModule]\n})\nexport class
AppRoutingModule { }\n","import { Component, OnInit } from '@angular/core';\n\n@Component({\n selector: 'app-root',
\n ctemplateUrl: './app.component.html',\n styleUrls: ['./app.component.css']\n})\nexport class AppComponent
implements OnInit {\n <title = 'Calculator';\n calc result: number = 0;\n old value: number = 0;\n operater:
string = '';\n\n number click(newNumber: number) {\n if (this.operator == '') {\n if (this.calc result 0
&& newlumber == 0) {\n this.calc_result = 0; \n jelse {\n this.calc_result =

parseFloac (this.calc result.toeString() + newNumber.toString()}: \n AT telse {\n this.old value =
this.calc result;\n this.calc result = newhumber;\n 3\n }\n\n kali click(} {\n this.cperator =
\n\n tambah_click() {\n this.operator = '+';\n }\n\n min click() {\n this.operator = '-';\n }\n\n
samadengan_click() {\n switch (this.operator) {\n case :\n this.calc_result = this.old value /
this.calec result:\n break:\n case 'x':\n this.calc_result = this.old value * this.calc resulr;
\n break:\n An this.calc result = this.old value + this.calc result;\n

break;\n case ' this.calc_result = this.old value - this.calc_result;\n break;\n
default:\n break;\n \n J}\n\n bagi_click(} {\n this.operator = ' \n }\n\n kuadrat_click() {\n
this.calc result = Math.pow(this.calc resulr, 2);\n }\n\n seperx click() {\n this.calc result = 1 /
this.calc_result:;\n }\n\n squarercot _click() {\n this.calc result = Math.sqrt(this.calc result)}:\n }\n\n
plusminus_click() {\n this.calc result = this.calc _result * (-1);\n }\n\n dot_click() {\n "
number_click()\n }\n\n persen_click() {\n this.calc_result = this.calc_result / 100;\n }\m\n c_click() {\n
this.calc result = 0;\n this.operator = '';\n }\nm\n back click{) {\n if (this.calc resulc.toString().length
= 1) \n this.calc_result = 0;\n return;\n o let res =

this.calc result.toString().slice(this.calc_result.toString().length - 1);\n res =

this.calc_result.toString() .replace(res, '');\n this.calc_result = parseFloat(res); \n }\n\n nol_click() {\n
this.number_click(0):\n I\n\n satu click() {\n this.number click(l);\n }\n\n dua click() {\n

this.number click(2);\n }\n\n ctiga_click(} {\n this.number click(3):\n }\n\n pat_click() {\n
this.number_click(4):;\n }\n\n ima click() {\n this.number_click(5);\n }\n\n nam click(} {\n
this.number_click(6);\n I\n\n juh_click() {\n this.number_click(7);\n }\n\n pan_click() {\n

this.number click(8):\n I\n\n lan click() {\n this.number click(%):\n }\n\n ngonInit() {\n\n }\n}\n", "<div
class=\"container bg\">\n <div class=\"row no-gutters calc top page-hero d-flex align-items-center justify-
content-center\">\n <div class=\"col\">\n <hl class=\"top_text\">{{calc result}}</hl>\n </div>\n
</div>\n <div class=\"row no-gutters calc_row\">\n <div class=\"col border border-light\">\n <button
type=\"button\" (click)=\"persen click()\" class=\"btn btn full brn top\">%</button>\n </div>\n <div
class=\"col border border-light\">\n <button type=\"button\" class=\"btn btn_full btn_tep\">CE</button>\n
</div\n <div class=\"col border border-light\">\n <button type=\"button\" (click)=\"c_click()\" class=
\"btn btn_full btn_ top\">C</button>\n </divz\n <div class=\"col border border-light\">\n <button
type=\"button\" (click)=\"back click()\" class=\"btn btn full btn top\">0</button>\n </div>\n </div>\n
<div class=\"row no-gutters calc_row\">\n <div class=\"col border border-light\">\n <button type=
\"button\" (click)=\"seperx click()\" class=\"btn btn_top btn_full\">¹/x</button>\n </div>\n

<div class=\"col border border-light\">\n <button type=\"button\" (click)=\"kuadrat_click()\" class=\"btn
btn_top btn full\">x²</button>\n </div\n <div class=\"col border border-light\">\n
<button type=\"button\" (click)=\"squareroot_click()\" class=\"btn btn top bta_full\">²Vx</button>\n
</div\n <div class=\"col border border-light\">\n <button type=\"button\" (click)=\"bagi_click()\"
class=\"btn btn_top btn_full\">:</button>\n </divz\n </div>\n <div class=\"row no-gutters calc_row
\">\n <div class=\"col border border-light\">\n <button type=\"button\" (click)=\"juh click(}\"
class=\"btn btn_bottom btn_ full\">7</button>\n </div>\n <div class=\"col border border-light\">\n
rtton e\ M b anl® FCT 5 AT = Bran 2152 AL 1 acem) Fhin hin hatbam hin Fo11L 0G0 ft b ansin PP

\n

>

155 1 Read | Ovr | Block Sync|Rec Caps

Table 13- Textpad Displaying Electron Ul Code

Embarcadero Technologies, Inc. | Source Data Repository

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

(®mbarcadero

Discovering the Best Developer

Framework Through Benchmarking
Delphi, WPF with .NET Framework, & Electron
On Microsoft Windows 10

16 December 2020, Version 1.0

Authors
Jim McKeeth
Adam Leone

Eli M.

https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator
https://github.com/Embarcadero/ComparisonResearch/tree/main/calculator

